Solving Optimal Control Problems with Symbolic Universal Differential Equations
This tutorial is based on SciMLSensitivity.jl tutorial. Instead of using a classical NN architecture, here we will combine the NN with a symbolic expression from DynamicExpressions.jl (the symbolic engine behind SymbolicRegression.jl and PySR).
Here we will solve a classic optimal control problem with a universal differential equation. Let
where we want to optimize our controller
where
and thus
is our loss function on the first order system. We thus choose a neural network form for
Package Imports
using Lux,
Boltz,
ComponentArrays,
OrdinaryDiffEqVerner,
Optimization,
OptimizationOptimJL,
OptimizationOptimisers,
SciMLSensitivity,
Statistics,
Printf,
Random
using DynamicExpressions, SymbolicRegression, MLJ, SymbolicUtils, Latexify
using CairoMakie
Precompiling OrdinaryDiffEqVerner...
353.0 ms ✓ FastPower
9786.0 ms ✓ SciMLBase
2514.0 ms ✓ DiffEqBase
3737.9 ms ✓ OrdinaryDiffEqCore
1192.7 ms ✓ OrdinaryDiffEqCore → OrdinaryDiffEqCoreEnzymeCoreExt
40301.6 ms ✓ OrdinaryDiffEqVerner
6 dependencies successfully precompiled in 58 seconds. 89 already precompiled.
Precompiling FastPowerForwardDiffExt...
525.7 ms ✓ FastPower → FastPowerForwardDiffExt
1 dependency successfully precompiled in 1 seconds. 21 already precompiled.
Precompiling ComponentArraysSciMLBaseExt...
780.7 ms ✓ SciMLBase → SciMLBaseChainRulesCoreExt
837.5 ms ✓ ComponentArrays → ComponentArraysSciMLBaseExt
2 dependencies successfully precompiled in 1 seconds. 67 already precompiled.
Precompiling DiffEqBaseForwardDiffExt...
1323.6 ms ✓ DiffEqBase → DiffEqBaseForwardDiffExt
1 dependency successfully precompiled in 2 seconds. 104 already precompiled.
Precompiling DiffEqBaseChainRulesCoreExt...
1118.9 ms ✓ DiffEqBase → DiffEqBaseChainRulesCoreExt
1 dependency successfully precompiled in 2 seconds. 93 already precompiled.
Precompiling Optimization...
785.4 ms ✓ PDMats
1021.1 ms ✓ DifferentiationInterface
786.4 ms ✓ FillArrays → FillArraysPDMatsExt
888.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceSparseArraysExt
927.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceSparseMatrixColoringsExt
982.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceSparseConnectivityTracerExt
1908.2 ms ✓ OptimizationBase
1759.2 ms ✓ Optimization
8 dependencies successfully precompiled in 6 seconds. 99 already precompiled.
Precompiling DiffEqBaseSparseArraysExt...
1170.0 ms ✓ DiffEqBase → DiffEqBaseSparseArraysExt
1 dependency successfully precompiled in 1 seconds. 96 already precompiled.
Precompiling DifferentiationInterfaceChainRulesCoreExt...
381.2 ms ✓ DifferentiationInterface → DifferentiationInterfaceChainRulesCoreExt
1 dependency successfully precompiled in 0 seconds. 11 already precompiled.
Precompiling DifferentiationInterfaceStaticArraysExt...
542.2 ms ✓ DifferentiationInterface → DifferentiationInterfaceStaticArraysExt
1 dependency successfully precompiled in 1 seconds. 10 already precompiled.
Precompiling DifferentiationInterfaceForwardDiffExt...
705.1 ms ✓ DifferentiationInterface → DifferentiationInterfaceForwardDiffExt
1 dependency successfully precompiled in 1 seconds. 22 already precompiled.
Precompiling OptimizationForwardDiffExt...
530.6 ms ✓ OptimizationBase → OptimizationForwardDiffExt
1 dependency successfully precompiled in 1 seconds. 98 already precompiled.
Precompiling OptimizationMLDataDevicesExt...
1164.4 ms ✓ OptimizationBase → OptimizationMLDataDevicesExt
1 dependency successfully precompiled in 1 seconds. 85 already precompiled.
Precompiling OptimizationOptimJL...
356.0 ms ✓ OptimizationBase → OptimizationFiniteDiffExt
464.7 ms ✓ DifferentiationInterface → DifferentiationInterfaceFiniteDiffExt
959.2 ms ✓ NLSolversBase
1628.1 ms ✓ LineSearches
2845.2 ms ✓ Optim
15855.1 ms ✓ OptimizationOptimJL
6 dependencies successfully precompiled in 22 seconds. 137 already precompiled.
Precompiling OptimizationOptimisers...
1622.1 ms ✓ OptimizationOptimisers
1 dependency successfully precompiled in 2 seconds. 116 already precompiled.
Precompiling SciMLSensitivity...
1110.6 ms ✓ PreallocationTools
4673.8 ms ✓ SciMLJacobianOperators
8790.2 ms ✓ Tracker
9469.9 ms ✓ Distributions
2775.9 ms ✓ DifferentiationInterface → DifferentiationInterfaceZygoteExt
10493.6 ms ✓ DifferentiationInterface → DifferentiationInterfaceEnzymeExt
5891.5 ms ✓ SciMLBase → SciMLBaseZygoteExt
10239.7 ms ✓ FastPower → FastPowerEnzymeExt
2034.3 ms ✓ DifferentiationInterface → DifferentiationInterfaceTrackerExt
2836.4 ms ✓ Tracker → TrackerPDMatsExt
2353.4 ms ✓ FastPower → FastPowerTrackerExt
8533.3 ms ✓ DiffEqCallbacks
2061.8 ms ✓ ArrayInterface → ArrayInterfaceTrackerExt
2531.1 ms ✓ RecursiveArrayTools → RecursiveArrayToolsTrackerExt
30100.8 ms ✓ ReverseDiff
3710.9 ms ✓ Zygote → ZygoteTrackerExt
32142.7 ms ✓ LinearSolve
4028.3 ms ✓ DiffEqBase → DiffEqBaseTrackerExt
2518.6 ms ✓ Distributions → DistributionsChainRulesCoreExt
3272.4 ms ✓ DiffEqBase → DiffEqBaseDistributionsExt
22030.1 ms ✓ DiffEqBase → DiffEqBaseEnzymeExt
6061.4 ms ✓ DifferentiationInterface → DifferentiationInterfaceReverseDiffExt
6367.5 ms ✓ FastPower → FastPowerReverseDiffExt
6185.1 ms ✓ ArrayInterface → ArrayInterfaceReverseDiffExt
2948.6 ms ✓ LinearSolve → LinearSolveEnzymeExt
5747.2 ms ✓ PreallocationTools → PreallocationToolsReverseDiffExt
10125.1 ms ✓ RecursiveArrayTools → RecursiveArrayToolsReverseDiffExt
8250.4 ms ✓ DiffEqBase → DiffEqBaseReverseDiffExt
5988.7 ms ✓ LinearSolve → LinearSolveKernelAbstractionsExt
4501.7 ms ✓ DiffEqNoiseProcess
5659.5 ms ✓ LinearSolve → LinearSolveSparseArraysExt
4063.4 ms ✓ DiffEqNoiseProcess → DiffEqNoiseProcessReverseDiffExt
19291.0 ms ✓ SciMLSensitivity
33 dependencies successfully precompiled in 72 seconds. 243 already precompiled.
Precompiling PreallocationToolsSparseConnectivityTracerExt...
946.9 ms ✓ PreallocationTools → PreallocationToolsSparseConnectivityTracerExt
1 dependency successfully precompiled in 1 seconds. 38 already precompiled.
Precompiling OptimizationEnzymeExt...
12622.8 ms ✓ OptimizationBase → OptimizationEnzymeExt
1 dependency successfully precompiled in 13 seconds. 112 already precompiled.
Precompiling MLDataDevicesTrackerExt...
1065.2 ms ✓ MLDataDevices → MLDataDevicesTrackerExt
1 dependency successfully precompiled in 1 seconds. 58 already precompiled.
Precompiling LuxLibTrackerExt...
910.1 ms ✓ LuxCore → LuxCoreArrayInterfaceTrackerExt
3109.8 ms ✓ LuxLib → LuxLibTrackerExt
2 dependencies successfully precompiled in 3 seconds. 96 already precompiled.
Precompiling LuxTrackerExt...
1770.8 ms ✓ Lux → LuxTrackerExt
1 dependency successfully precompiled in 2 seconds. 110 already precompiled.
Precompiling BoltzTrackerExt...
2096.7 ms ✓ Boltz → BoltzTrackerExt
1 dependency successfully precompiled in 2 seconds. 129 already precompiled.
Precompiling ComponentArraysTrackerExt...
1003.8 ms ✓ ComponentArrays → ComponentArraysTrackerExt
1 dependency successfully precompiled in 1 seconds. 69 already precompiled.
Precompiling MLDataDevicesReverseDiffExt...
2922.7 ms ✓ MLDataDevices → MLDataDevicesReverseDiffExt
1 dependency successfully precompiled in 3 seconds. 43 already precompiled.
Precompiling LuxLibReverseDiffExt...
2818.1 ms ✓ LuxCore → LuxCoreArrayInterfaceReverseDiffExt
3631.2 ms ✓ LuxLib → LuxLibReverseDiffExt
2 dependencies successfully precompiled in 4 seconds. 94 already precompiled.
Precompiling BoltzReverseDiffExt...
3675.1 ms ✓ Lux → LuxReverseDiffExt
3990.3 ms ✓ Boltz → BoltzReverseDiffExt
2 dependencies successfully precompiled in 4 seconds. 129 already precompiled.
Precompiling ComponentArraysReverseDiffExt...
2914.6 ms ✓ ComponentArrays → ComponentArraysReverseDiffExt
1 dependency successfully precompiled in 3 seconds. 51 already precompiled.
Precompiling OptimizationReverseDiffExt...
2792.7 ms ✓ OptimizationBase → OptimizationReverseDiffExt
1 dependency successfully precompiled in 3 seconds. 118 already precompiled.
Precompiling OptimizationZygoteExt...
1880.4 ms ✓ OptimizationBase → OptimizationZygoteExt
1 dependency successfully precompiled in 2 seconds. 162 already precompiled.
Precompiling DynamicExpressionsOptimExt...
1186.8 ms ✓ DynamicExpressions → DynamicExpressionsOptimExt
1 dependency successfully precompiled in 1 seconds. 81 already precompiled.
Precompiling SymbolicRegression...
5318.4 ms ✓ DynamicQuantities
656.2 ms ✓ DynamicQuantities → DynamicQuantitiesLinearAlgebraExt
71503.9 ms ✓ SymbolicRegression
3 dependencies successfully precompiled in 78 seconds. 107 already precompiled.
Precompiling SymbolicRegressionEnzymeExt...
17564.3 ms ✓ SymbolicRegression → SymbolicRegressionEnzymeExt
1 dependency successfully precompiled in 18 seconds. 130 already precompiled.
Precompiling MLJ...
1906.2 ms ✓ Distributions → DistributionsTestExt
3125.2 ms ✓ ScientificTypes
2268.3 ms ✓ CategoricalDistributions
6142.1 ms ✓ MLJEnsembles
10799.3 ms ✓ MLJBase
18344.3 ms ✓ MLJModels
9475.2 ms ✓ MLJBalancing
9774.0 ms ✓ MLJIteration
29330.7 ms ✓ HTTP
6389.1 ms ✓ MLJTuning
2237.4 ms ✓ MLFlowClient
3710.4 ms ✓ OpenML
4278.0 ms ✓ MLJFlow
30614.1 ms ✓ StatisticalMeasures
2263.4 ms ✓ StatisticalMeasures → ScientificTypesExt
2353.5 ms ✓ MLJBase → DefaultMeasuresExt
6013.0 ms ✓ MLJ
17 dependencies successfully precompiled in 45 seconds. 188 already precompiled.
Precompiling DynamicQuantitiesScientificTypesExt...
1377.9 ms ✓ DynamicQuantities → DynamicQuantitiesScientificTypesExt
1 dependency successfully precompiled in 2 seconds. 69 already precompiled.
Precompiling SciMLBaseMLStyleExt...
929.3 ms ✓ SciMLBase → SciMLBaseMLStyleExt
1 dependency successfully precompiled in 2 seconds. 56 already precompiled.
Precompiling OptimizationMLUtilsExt...
1777.2 ms ✓ OptimizationBase → OptimizationMLUtilsExt
1 dependency successfully precompiled in 2 seconds. 144 already precompiled.
Precompiling LossFunctionsExt...
2310.4 ms ✓ StatisticalMeasures → LossFunctionsExt
1 dependency successfully precompiled in 3 seconds. 138 already precompiled.
Precompiling SymbolicRegressionSymbolicUtilsExt...
3991.7 ms ✓ SymbolicRegression → SymbolicRegressionSymbolicUtilsExt
1 dependency successfully precompiled in 4 seconds. 146 already precompiled.
Precompiling SymbolicUtilsReverseDiffExt...
3790.4 ms ✓ SymbolicUtils → SymbolicUtilsReverseDiffExt
1 dependency successfully precompiled in 4 seconds. 87 already precompiled.
Precompiling CairoMakie...
831.7 ms ✓ FreeType2_jll
1123.7 ms ✓ Fontconfig_jll
2151.8 ms ✓ KernelDensity
1375.5 ms ✓ FreeType
843.2 ms ✓ Cairo_jll
762.8 ms ✓ HarfBuzz_jll
738.2 ms ✓ libass_jll
1198.1 ms ✓ Pango_jll
947.9 ms ✓ FFMPEG_jll
1490.1 ms ✓ Cairo
13128.6 ms ✓ GeometryBasics
1907.6 ms ✓ Packing
2225.1 ms ✓ ShaderAbstractions
3393.1 ms ✓ FreeTypeAbstraction
6040.7 ms ✓ MakieCore
8844.9 ms ✓ GridLayoutBase
10538.3 ms ✓ MathTeXEngine
145957.5 ms ✓ Makie
89001.6 ms ✓ CairoMakie
19 dependencies successfully precompiled in 262 seconds. 254 already precompiled.
Precompiling DiffEqBaseUnitfulExt...
1217.7 ms ✓ DiffEqBase → DiffEqBaseUnitfulExt
1 dependency successfully precompiled in 2 seconds. 93 already precompiled.
Precompiling DynamicQuantitiesUnitfulExt...
1125.5 ms ✓ DynamicQuantities → DynamicQuantitiesUnitfulExt
1 dependency successfully precompiled in 1 seconds. 13 already precompiled.
Precompiling HTTPExt...
1788.5 ms ✓ FileIO → HTTPExt
1 dependency successfully precompiled in 2 seconds. 43 already precompiled.
Precompiling SciMLBaseMakieExt...
7500.8 ms ✓ SciMLBase → SciMLBaseMakieExt
1 dependency successfully precompiled in 8 seconds. 307 already precompiled.
Helper Functions
function plot_dynamics(sol, us, ts)
fig = Figure()
ax = CairoMakie.Axis(fig[1, 1]; xlabel=L"t")
ylims!(ax, (-6, 6))
lines!(ax, ts, sol[1, :]; label=L"u_1(t)", linewidth=3)
lines!(ax, ts, sol[2, :]; label=L"u_2(t)", linewidth=3)
lines!(ax, ts, vec(us); label=L"u(t)", linewidth=3)
axislegend(ax; position=:rb)
return fig
end
plot_dynamics (generic function with 1 method)
Training a Neural Network based UDE
Let's setup the neural network. For the first part, we won't do any symbolic regression. We will plain and simple train a neural network to solve the optimal control problem.
rng = Xoshiro(0)
tspan = (0.0, 8.0)
mlp = Chain(Dense(1 => 4, gelu), Dense(4 => 4, gelu), Dense(4 => 1))
function construct_ude(mlp, solver; kwargs...)
return @compact(; mlp, solver, kwargs...) do x_in, ps
x, ts, ret_sol = x_in
function dudt(du, u, p, t)
u₁, u₂ = u
du[1] = u₂
du[2] = mlp([t], p)[1]^3
return nothing
end
prob = ODEProblem{true}(dudt, x, extrema(ts), ps.mlp)
sol = solve(
prob,
solver;
saveat=ts,
sensealg=QuadratureAdjoint(; autojacvec=ReverseDiffVJP(true)),
kwargs...,
)
us = mlp(reshape(ts, 1, :), ps.mlp)
ret_sol === Val(true) && @return sol, us
@return Array(sol), us
end
end
ude = construct_ude(mlp, Vern9(); abstol=1e-10, reltol=1e-10);
Here we are going to tuse the same configuration for testing, but this is to show that we can setup them up with different ode solve configurations
ude_test = construct_ude(mlp, Vern9(); abstol=1e-10, reltol=1e-10);
function train_model_1(ude, rng, ts_)
ps, st = Lux.setup(rng, ude)
ps = ComponentArray{Float64}(ps)
stateful_ude = StatefulLuxLayer{true}(ude, nothing, st)
ts = collect(ts_)
function loss_adjoint(θ)
x, us = stateful_ude(([-4.0, 0.0], ts, Val(false)), θ)
return mean(abs2, 4 .- x[1, :]) + 2 * mean(abs2, x[2, :]) + 0.1 * mean(abs2, us)
end
callback = function (state, l)
state.iter % 50 == 1 && @printf "Iteration: %5d\tLoss: %10g\n" state.iter l
return false
end
optf = OptimizationFunction((x, p) -> loss_adjoint(x), AutoZygote())
optprob = OptimizationProblem(optf, ps)
res1 = solve(optprob, Optimisers.Adam(0.001); callback, maxiters=500)
optprob = OptimizationProblem(optf, res1.u)
res2 = solve(optprob, LBFGS(); callback, maxiters=100)
return StatefulLuxLayer{true}(ude, res2.u, st)
end
trained_ude = train_model_1(ude, rng, 0.0:0.01:8.0)
┌ Warning: Lux.apply(m::AbstractLuxLayer, x::AbstractArray{<:ReverseDiff.TrackedReal}, ps, st) input was corrected to Lux.apply(m::AbstractLuxLayer, x::ReverseDiff.TrackedArray}, ps, st).
│
│ 1. If this was not the desired behavior overload the dispatch on `m`.
│
│ 2. This might have performance implications. Check which layer was causing this problem using `Lux.Experimental.@debug_mode`.
└ @ LuxCoreArrayInterfaceReverseDiffExt ~/.julia/packages/LuxCore/Av7WJ/ext/LuxCoreArrayInterfaceReverseDiffExt.jl:9
Iteration: 1 Loss: 40.5618
Iteration: 51 Loss: 29.4147
Iteration: 101 Loss: 28.2559
Iteration: 151 Loss: 27.217
Iteration: 201 Loss: 26.1657
Iteration: 251 Loss: 25.1631
Iteration: 301 Loss: 24.2914
Iteration: 351 Loss: 23.5965
Iteration: 401 Loss: 23.0763
Iteration: 451 Loss: 22.6983
Iteration: 1 Loss: 22.245
Iteration: 51 Loss: 12.0085
sol, us = ude_test(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), trained_ude.ps, trained_ude.st)[1];
plot_dynamics(sol, us, 0.0:0.01:8.0)
Now that the system is in a better behaved part of parameter space, we return to the original loss function to finish the optimization:
function train_model_2(stateful_ude::StatefulLuxLayer, ts_)
ts = collect(ts_)
function loss_adjoint(θ)
x, us = stateful_ude(([-4.0, 0.0], ts, Val(false)), θ)
return mean(abs2, 4 .- x[1, :]) .+ 2 * mean(abs2, x[2, :]) .+ mean(abs2, us)
end
callback = function (state, l)
state.iter % 10 == 1 && @printf "Iteration: %5d\tLoss: %10g\n" state.iter l
return false
end
optf = OptimizationFunction((x, p) -> loss_adjoint(x), AutoZygote())
optprob = OptimizationProblem(optf, stateful_ude.ps)
res2 = solve(optprob, LBFGS(); callback, maxiters=100)
return StatefulLuxLayer{true}(stateful_ude.model, res2.u, stateful_ude.st)
end
trained_ude = train_model_2(trained_ude, 0.0:0.01:8.0)
┌ Warning: Lux.apply(m::AbstractLuxLayer, x::AbstractArray{<:ReverseDiff.TrackedReal}, ps, st) input was corrected to Lux.apply(m::AbstractLuxLayer, x::ReverseDiff.TrackedArray}, ps, st).
│
│ 1. If this was not the desired behavior overload the dispatch on `m`.
│
│ 2. This might have performance implications. Check which layer was causing this problem using `Lux.Experimental.@debug_mode`.
└ @ LuxCoreArrayInterfaceReverseDiffExt ~/.julia/packages/LuxCore/Av7WJ/ext/LuxCoreArrayInterfaceReverseDiffExt.jl:9
Iteration: 1 Loss: 12.7099
Iteration: 11 Loss: 12.6761
Iteration: 21 Loss: 12.664
Iteration: 31 Loss: 12.6503
Iteration: 41 Loss: 12.6331
Iteration: 51 Loss: 12.6149
Iteration: 61 Loss: 12.5907
Iteration: 71 Loss: 12.5801
Iteration: 81 Loss: 12.5585
Iteration: 91 Loss: 12.5348
sol, us = ude_test(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), trained_ude.ps, trained_ude.st)[1];
plot_dynamics(sol, us, 0.0:0.01:8.0)
Symbolic Regression
Ok so now we have a trained neural network that solves the optimal control problem. But can we replace Dense(4 => 4, gelu)
with a symbolic expression? Let's try!
Data Generation for Symbolic Regression
First, we need to generate data for the symbolic regression.
ts = reshape(collect(0.0:0.1:8.0), 1, :)
X_train = mlp[1](ts, trained_ude.ps.mlp.layer_1, trained_ude.st.mlp.layer_1)[1]
4×81 Matrix{Float64}:
-0.120704 -0.107623 -0.0946398 -0.0821155 -0.0703241 -0.059458 -0.0496368 -0.0409181 -0.0333078 -0.0267716 -0.0212448 -0.0166426 -0.0128676 -0.00981729 -0.0073891 -0.00548503 -0.00401443 -0.00289594 -0.0020584 -0.00144109 -0.000993376 -0.000673966 -0.000449879 -0.000295336 -0.000190602 -0.000120879 -7.53033e-5 -4.6061e-5 -2.76522e-5 -1.62862e-5 -9.40639e-6 -5.32542e-6 -2.95411e-6 -1.60494e-6 -8.53613e-7 -4.44271e-7 -2.26168e-7 -1.12571e-7 -5.47571e-8 -2.60188e-8 -1.2072e-8 -5.46667e-9 -2.41508e-9 -1.04044e-9 -4.36901e-10 -1.78749e-10 -7.1221e-11 -2.76238e-11 -1.04251e-11 -3.82652e-12 -1.36542e-12 -4.73449e-13 -1.59453e-13 -5.21382e-14 -1.65443e-14 -5.09231e-15 -1.51973e-15 -4.39553e-16 -1.23155e-16 -3.3412e-17 -8.77331e-18 -2.22866e-18 -5.4746e-19 -1.29985e-19 -2.98178e-20 -6.60546e-21 -1.41249e-21 -2.91424e-22 -5.79873e-23 -1.11227e-23 -2.05575e-24 -3.65943e-25 -6.27114e-26 -1.03414e-26 -1.64026e-27 -2.50124e-28 -3.66533e-29 -5.15932e-30 -6.97266e-31 -9.04352e-32 -1.12516e-32
0.284447 0.191474 0.108764 0.0369542 -0.0236105 -0.0729022 -0.111211 -0.139126 -0.157498 -0.167391 -0.170012 -0.166652 -0.158613 -0.147152 -0.133429 -0.118465 -0.103124 -0.0880986 -0.0739084 -0.0609151 -0.0493372 -0.0392727 -0.0307237 -0.0236197 -0.0178406 -0.0132361 -0.0096422 -0.00689425 -0.00483611 -0.00332654 -0.00224257 -0.00148086 -0.000957287 -0.00060544 -0.000374394 -0.000226225 -0.000133483 -7.68597e-5 -4.31589e-5 -2.36184e-5 -1.25877e-5 -6.52923e-6 -3.29382e-6 -1.61496e-6 -7.6904e-7 -3.55435e-7 -1.59328e-7 -6.92222e-8 -2.91282e-8 -1.1863e-8 -4.67283e-9 -1.77897e-9 -6.54109e-10 -2.32125e-10 -7.94465e-11 -2.6206e-11 -8.32519e-12 -2.54533e-12 -7.48418e-13 -2.11487e-13 -5.73924e-14 -1.49467e-14 -3.73292e-15 -8.93415e-16 -2.04762e-16 -4.49082e-17 -9.4183e-18 -1.88746e-18 -3.61187e-19 -6.59513e-20 -1.14826e-20 -1.90489e-21 -3.00888e-22 -4.52198e-23 -6.46148e-24 -8.77208e-25 -1.13065e-25 -1.3826e-26 -1.60286e-27 -1.7604e-28 -1.83035e-29
-0.162793 -0.142606 -0.116171 -0.0887784 -0.0639403 -0.0434972 -0.0279656 -0.0169827 -0.00972666 -0.00524259 -0.002652 -0.00125513 -0.000553878 -0.000227077 -8.61651e-5 -3.01445e-5 -9.68487e-6 -2.84613e-6 -7.61976e-7 -1.85093e-7 -4.06283e-8 -8.02553e-9 -1.42081e-9 -2.245e-10 -3.15296e-11 -3.91952e-12 -4.29487e-13 -4.13102e-14 -3.47325e-15 -2.54196e-16 -1.61262e-17 -8.83088e-19 -4.15679e-20 -1.67481e-21 -5.75174e-23 -1.6766e-24 -4.13069e-26 -8.56539e-28 -1.48857e-29 -2.15902e-31 -2.60239e-33 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
-0.0873662 -0.0613839 -0.0404561 -0.0250232 -0.0145118 -0.00787502 -0.00398753 -0.00187753 -0.000818874 -0.000329434 -0.000121709 -4.11053e-5 -1.26319e-5 -3.5154e-6 -8.81734e-7 -1.98363e-7 -3.98318e-8 -7.10437e-9 -1.11999e-9 -1.55295e-10 -1.88456e-11 -1.99166e-12 -1.82399e-13 -1.44034e-14 -9.7585e-16 -5.64424e-17 -2.77308e-18 -1.15154e-19 -4.02145e-21 -1.17515e-22 -2.85914e-24 -5.76268e-26 -9.57371e-28 -1.30442e-29 -1.45029e-31 -1.3092e-33 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0 -0.0
This is the training input data. Now we generate the targets
Y_train = mlp[2](X_train, trained_ude.ps.mlp.layer_2, trained_ude.st.mlp.layer_2)[1]
4×81 Matrix{Float64}:
0.0258644 0.0276239 0.0251692 0.0209178 0.0164794 0.0126878 0.00979604 0.0077031 0.00614522 0.0048323 0.0035284 0.00208602 0.000446717 -0.00137783 -0.00333192 -0.00534041 -0.0073271 -0.00922609 -0.0109871 -0.0125765 -0.0139762 -0.0151813 -0.0161968 -0.0170352 -0.0177135 -0.0182515 -0.01867 -0.0189891 -0.0192275 -0.0194021 -0.0195272 -0.0196151 -0.0196754 -0.0197159 -0.0197425 -0.0197596 -0.0197702 -0.0197768 -0.0197806 -0.0197829 -0.0197841 -0.0197848 -0.0197852 -0.0197854 -0.0197855 -0.0197855 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856 -0.0197856
1.15615 0.893431 0.66566 0.479893 0.336555 0.231173 0.157009 0.107194 0.075877 0.058558 0.0519547 0.0536973 0.0620088 0.0754495 0.0927485 0.112718 0.134233 0.156257 0.177881 0.19836 0.217143 0.233871 0.248367 0.260613 0.270707 0.278833 0.285228 0.290149 0.293852 0.296577 0.29854 0.299922 0.300873 0.301512 0.301933 0.302203 0.302372 0.302475 0.302536 0.302572 0.302592 0.302603 0.302609 0.302612 0.302613 0.302614 0.302614 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615 0.302615
0.734348 0.908501 1.06398 1.19699 1.30671 1.39399 1.46054 1.50839 1.53967 1.55659 1.56133 1.5561 1.54306 1.52427 1.50164 1.47686 1.45139 1.42637 1.40271 1.38101 1.36166 1.34482 1.33051 1.31862 1.30894 1.30122 1.2952 1.29059 1.28714 1.28461 1.2828 1.28152 1.28064 1.28005 1.27966 1.27942 1.27926 1.27916 1.27911 1.27908 1.27906 1.27905 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904 1.27904
0.510947 0.184332 -0.0184213 -0.121812 -0.162144 -0.169999 -0.164754 -0.156503 -0.149661 -0.145724 -0.144839 -0.146556 -0.150164 -0.154843 -0.159763 -0.164184 -0.167543 -0.169516 -0.170028 -0.16922 -0.167379 -0.164859 -0.162008 -0.159119 -0.156409 -0.154013 -0.151994 -0.150361 -0.149086 -0.148123 -0.147417 -0.146913 -0.146564 -0.146327 -0.146171 -0.14607 -0.146007 -0.145969 -0.145946 -0.145933 -0.145925 -0.145921 -0.145919 -0.145918 -0.145917 -0.145917 -0.145917 -0.145917 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916 -0.145916
Fitting the Symbolic Expression
We will follow the example from SymbolicRegression.jl docs to fit the symbolic expression.
srmodel = MultitargetSRRegressor(;
binary_operators=[+, -, *, /], niterations=100, save_to_file=false
);
One important note here is to transpose the data because that is how MLJ expects the data to be structured (this is in contrast to how Lux or SymbolicRegression expects the data)
mach = machine(srmodel, X_train', Y_train')
fit!(mach; verbosity=0)
r = report(mach)
best_eq = [
r.equations[1][r.best_idx[1]],
r.equations[2][r.best_idx[2]],
r.equations[3][r.best_idx[3]],
r.equations[4][r.best_idx[4]],
]
4-element Vector{DynamicExpressions.ExpressionModule.Expression{Float64, DynamicExpressions.NodeModule.Node{Float64}, @NamedTuple{operators::DynamicExpressions.OperatorEnumModule.OperatorEnum{Tuple{typeof(+), typeof(-), typeof(*), typeof(/)}, Tuple{}}, variable_names::Vector{String}}}}:
(x3 + (((((x1 * ((x1 * -2.571332464832935) + -1.2506172908804345)) * ((x4 + x2) / (-0.4995489388459282 - x2))) - x2) * -0.2346860578013044) - -0.03877183753159419)) * -0.5106275965445597
((x2 + ((x1 + 1.8154095463794062) - (x2 * ((x2 + x1) + -0.6099459354506391)))) * (x2 - x3)) + (0.3026148961127518 - (x3 * -0.542910731775629))
(x2 * -1.678225535156146) + ((x4 + 1.2790322763056396) + (((x1 * 2.58289672213348) + 0.14680398353376703) * (x1 + ((((x4 - x1) + (x4 * (x2 - -0.113273574956859))) * x2) / 0.3590934006394513))))
(((x3 - ((x4 / 0.2667449510321438) - x2)) * ((x2 + x2) + (x4 + 0.334038458901784))) + -0.08278131152493046) * (1.7642104058680492 - (x3 - x1))
Let's see the expressions that SymbolicRegression.jl found. In case you were wondering, these expressions are not hardcoded, it is live updated from the output of the code above using Latexify.jl
and the integration of SymbolicUtils.jl
with DynamicExpressions.jl
.
Combining the Neural Network with the Symbolic Expression
Now that we have the symbolic expression, we can combine it with the neural network to solve the optimal control problem. but we do need to perform some finetuning.
hybrid_mlp = Chain(
Dense(1 => 4, gelu),
Layers.DynamicExpressionsLayer(OperatorEnum(; binary_operators=[+, -, *, /]), best_eq),
Dense(4 => 1),
)
Chain(
layer_1 = Dense(1 => 4, gelu_tanh), # 8 parameters
layer_2 = DynamicExpressionsLayer(
chain = Chain(
layer_1 = Parallel(
layer_1 = InternalDynamicExpressionWrapper(DynamicExpressions.OperatorEnumModule.OperatorEnum{Tuple{typeof(+), typeof(-), typeof(*), typeof(/)}, Tuple{}}((+, -, *, /), ()), (x3 + (((((x1 * ((x1 * -2.571332464832935) + -1.2506172908804345)) * ((x4 + x2) / (-0.4995489388459282 - x2))) - x2) * -0.2346860578013044) - -0.03877183753159419)) * -0.5106275965445597; eval_options=(turbo = Val{false}(), bumper = Val{false}())), # 6 parameters
layer_2 = InternalDynamicExpressionWrapper(DynamicExpressions.OperatorEnumModule.OperatorEnum{Tuple{typeof(+), typeof(-), typeof(*), typeof(/)}, Tuple{}}((+, -, *, /), ()), ((x2 + ((x1 + 1.8154095463794062) - (x2 * ((x2 + x1) + -0.6099459354506391)))) * (x2 - x3)) + (0.3026148961127518 - (x3 * -0.542910731775629)); eval_options=(turbo = Val{false}(), bumper = Val{false}())), # 4 parameters
layer_3 = InternalDynamicExpressionWrapper(DynamicExpressions.OperatorEnumModule.OperatorEnum{Tuple{typeof(+), typeof(-), typeof(*), typeof(/)}, Tuple{}}((+, -, *, /), ()), (x2 * -1.678225535156146) + ((x4 + 1.2790322763056396) + (((x1 * 2.58289672213348) + 0.14680398353376703) * (x1 + ((((x4 - x1) + (x4 * (x2 - -0.113273574956859))) * x2) / 0.3590934006394513)))); eval_options=(turbo = Val{false}(), bumper = Val{false}())), # 6 parameters
layer_4 = InternalDynamicExpressionWrapper(DynamicExpressions.OperatorEnumModule.OperatorEnum{Tuple{typeof(+), typeof(-), typeof(*), typeof(/)}, Tuple{}}((+, -, *, /), ()), (((x3 - ((x4 / 0.2667449510321438) - x2)) * ((x2 + x2) + (x4 + 0.334038458901784))) + -0.08278131152493046) * (1.7642104058680492 - (x3 - x1)); eval_options=(turbo = Val{false}(), bumper = Val{false}())), # 4 parameters
),
layer_2 = WrappedFunction(stack1),
),
),
layer_3 = Dense(4 => 1), # 5 parameters
) # Total: 33 parameters,
# plus 0 states.
There you have it! It is that easy to take the fitted Symbolic Expression and combine it with a neural network. Let's see how it performs before fintetuning.
hybrid_ude = construct_ude(hybrid_mlp, Vern9(); abstol=1e-10, reltol=1e-10);
We want to reuse the trained neural network parameters, so we will copy them over to the new model
st = Lux.initialstates(rng, hybrid_ude)
ps = (;
mlp=(;
layer_1=trained_ude.ps.mlp.layer_1,
layer_2=Lux.initialparameters(rng, hybrid_mlp[2]),
layer_3=trained_ude.ps.mlp.layer_3,
)
)
ps = ComponentArray(ps)
sol, us = hybrid_ude(([-4.0, 0.0], 0.0:0.01:8.0, Val(true)), ps, st)[1];
plot_dynamics(sol, us, 0.0:0.01:8.0)
Now that does perform well! But we could finetune this model very easily. We will skip that part on CI, but you can do it by using the same training code as above.
Appendix
using InteractiveUtils
InteractiveUtils.versioninfo()
if @isdefined(MLDataDevices)
if @isdefined(CUDA) && MLDataDevices.functional(CUDADevice)
println()
CUDA.versioninfo()
end
if @isdefined(AMDGPU) && MLDataDevices.functional(AMDGPUDevice)
println()
AMDGPU.versioninfo()
end
end
Julia Version 1.11.4
Commit 8561cc3d68d (2025-03-10 11:36 UTC)
Build Info:
Official https://julialang.org/ release
Platform Info:
OS: Linux (x86_64-linux-gnu)
CPU: 4 × AMD EPYC 7763 64-Core Processor
WORD_SIZE: 64
LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)
Environment:
JULIA_NUM_THREADS = 1
JULIA_CUDA_HARD_MEMORY_LIMIT = 100%
JULIA_PKG_PRECOMPILE_AUTO = 0
JULIA_DEBUG = Literate
This page was generated using Literate.jl.