Skip to content
0.0k

References

  1. S. Greydanus, M. Dzamba and J. Yosinski. Hamiltonian neural networks. Advances in neural information processing systems 32 (2019).

  2. H. Luo, H. Wu, H. Zhou, L. Xing, Y. Di, J. Wang and M. Long. Transolver++: An Accurate Neural Solver for PDEs on Million-Scale Geometries, arXiv preprint arXiv:2502.02414 (2025).

  3. H. Wu, H. Luo, H. Wang, J. Wang and M. Long. Transolver: A fast transformer solver for pdes on general geometries, arXiv preprint arXiv:2402.02366 (2024).

  4. N. Gaby, F. Zhang and X. Ye. Lyapunov-Net: A Deep Neural Network Architecture for Lyapunov Function Approximation (2022), arXiv:2109.13359 [cs.LG].

  5. A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly and others. An image is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint arXiv:2010.11929 (2020).

  6. A. Krizhevsky, I. Sutskever and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in neural information processing systems 25 (2012).

  7. M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural networks. In: International conference on machine learning (PMLR, 2019); pp. 6105–6114.

  8. K. Simonyan. Very deep convolutional networks for large-scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

  9. A. Trockman and J. Z. Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792 (2022).

  10. G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger. Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2017); pp. 4700–4708.

  11. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2015); pp. 1–9.

  12. A. G. Howard. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications, arXiv preprint arXiv:1704.04861 (2017).

  13. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov and L.-C. Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2018); pp. 4510–4520.

  14. A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang, V. Vasudevan and others. Searching for mobilenetv3. In: Proceedings of the IEEE/CVF international conference on computer vision (2019); pp. 1314–1324.

  15. K. He, X. Zhang, S. Ren and J. Sun. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2016); pp. 770–778.

  16. S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2017); pp. 1492–1500.

  17. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally and K. Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size (2016), arXiv:1602.07360 [cs.CV].

  18. S. Zagoruyko and N. Komodakis. Wide Residual Networks (2017), arXiv:1605.07146 [cs.CV].

Layout Switch

Adjust the layout style of VitePress to adapt to different reading needs and screens.

Expand all
The sidebar and content area occupy the entire width of the screen.
Expand sidebar with adjustable values
Expand sidebar width and add a new slider for user to choose and customize their desired width of the maximum width of sidebar can go, but the content area width will remain the same.
Expand all with adjustable values
Expand sidebar width and add a new slider for user to choose and customize their desired width of the maximum width of sidebar can go, but the content area width will remain the same.
Original width
The original layout width of VitePress

Page Layout Max Width

Adjust the exact value of the page width of VitePress layout to adapt to different reading needs and screens.

Adjust the maximum width of the page layout
A ranged slider for user to choose and customize their desired width of the maximum width of the page layout can go.

Content Layout Max Width

Adjust the exact value of the document content width of VitePress layout to adapt to different reading needs and screens.

Adjust the maximum width of the content layout
A ranged slider for user to choose and customize their desired width of the maximum width of the content layout can go.

Spotlight

Highlight the line where the mouse is currently hovering in the content to optimize for users who may have reading and focusing difficulties.

ONOn
Turn on Spotlight.
OFFOff
Turn off Spotlight.